
 ISSN 2394-7314

International Journal of Novel Research in Computer Science and Software Engineering
Vol. 3, Issue 1, pp: (140-158), Month: January-April 2016, Available at: www.noveltyjournals.com

Page | 140
Novelty Journals

Review of FPD'S Languages, Compilers,

Interpreters and Tools

1
Amr Rashed,

2
Bedir Yousif,

3
Ahmed Shaban Samra

1
Higher studies Deanship, Taif university, Taif, Saudi Arabia

2
Communication and Electronics Department, Faculty of engineering, Kafrelsheikh University, Egypt
3
Communication and Electronics Department, Faculty of engineering, Mansoura University, Egypt

Abstract: FPGAs have achieved quick acceptance, spread and growth over the past years because they can be

applied to a variety of applications. Some of these applications includes: random logic, bioinformatics, video and

image processing, device controllers, communication encoding, modulation, and filtering, limited size systems with

RAM blocks, and many more. For example, for video and image processing application it is very difficult and time

consuming to use traditional HDL languages, so it’s obligatory to search for other efficient, synthesis tools to

implement your design. The question is what is the best comparable language or tool to implement desired

application. Also this research is very helpful for language developers to know strength points, weakness points,

ease of use and efficiency of each tool or language. This research faced many challenges one of them is that there is

no complete reference of all FPGA languages and tools, also available references and guides are few and almost not

good. Searching for a simple example to learn some of these tools or languages would be a time consuming. This

paper represents a review study or guide of almost all PLD's languages, interpreters and tools that can be used for

programming, simulating and synthesizing PLD's for analog, digital & mixed signals and systems supported with

simple examples. In addition, their features and applications will be discussed. In Addition to the aforementioned

summary, the paper presents a new classification for FPGA languages and Tools as well. Interpreters like PERL

and MYHHDL (python based) also described here. At the end one can summarize all what’s needed to know about

FPGA languages, Tools, Compilers, and Interpreters in one research paper.

Keywords: HDL languages, C to HDL tools, Labview, Matlab HDL coder.

1. INTRODUCTION

FPGAs have achieved quick acceptance, spread and growth over the past years because they can be applied to a variety of

applications. Some of these applications includes: random logic, bioinformatics, video and image processing, device

controllers, communication encoding, modulation, and filtering, limited size systems with RAM blocks, and many more.

In these paper FPGA's languages, compilers and tools would be presented. These can be used for programming,

simulating, synthesizing and more FPGA, PLA, and CPLD for analog, digital and mixed signals and systems. In addition,

their features and applications will be discussed as well. All C based languages will be widely discussed while FPGA,

LABVIEW system will be briefly discussed. The importance of each language is declared with simple example and its

applications. Some languages does not declared here for two reasons first there is no good references describing it or there

is no good and simple example to explain this language. Finally a proposed languages category table is presented.

The paper is structured as follows. Section 1: Introduction. Section 2: present Related Work. Section 3 discusses different

Field-Programmable Device (FPD) types and programming techniques. Section 4 explains FPD languages, tools and

compilers used for implementation, simulation and synthesis. Section 5 summarizes our observations and discusses

potential future extensions of the research.

 ISSN 2394-7314

International Journal of Novel Research in Computer Science and Software Engineering
Vol. 3, Issue 1, pp: (140-158), Month: January-April 2016, Available at: www.noveltyjournals.com

Page | 141
Novelty Journals

This paper makes the following contributions (1) Paper represents a collection of almost all FPGA languages and tools by

names, (2) Paper represents a brief description of some of these languages and tools, (3) Paper represents new

classification for FPGA languages and tools, (4) Paper represents a collection of comparative studies between FPGA

languages and tools with respect to simple calibration or evaluation test application. This research is very helpful for

language developers to know strength points, weakness points, ease of use and efficiency of each tool or language. The

best way to clear describe of a language is to explain its functionality through a simple example. A 4-bit counter is chosen

to be mentioned in each language description.

2. RELATED WORK

As mentioned above there is no complete (in my knowledge) reference or guide describes all FPGA languages, Tools,

Compilers, Interpreters. Also there is no clear classification of their categories, so this research paper depends on many

references each one presents one or more tool. For no or inadequate reference tools or languages we depend on available

data in their home pages.

Basic Categories of Hardware description Languages (HDLs) are (1) High Level Synthesis (HLS) tools also called

behavioral and architectural-level synthesis .HLS tools in general (some of them doesn't generate HDLs) uses the existing

programming language like C as an input design language and produce or generate the related HDL language, (2)

Alternative syntax: Some tools suggest a substitution syntax to VHDL or Verilog code. The substitution or alternative

syntax approach keeps the control of the generated hardware, but gives the advantage of an easier to master syntax and

sometimes of ease of debugging,(3)Basic HDL languages: basic or traditional HDL languages like VHDL, Verilog HDL.

Esam El-ArabyI , and others in 2007[1], characterize a comparative analysis methodology and results depend on

empirical study of high level programming for reconfigurable computers . This research is focused on three representative

high-level tools Impulse-C, DSPlogic , and Mitrion-C in the Cray XD1 environment. Also paper represents imperative

programming, functional programming and graphical programming comparison are made with respect to their

performance and ease of use. This research depend on classifying Fpga languages in two categories HDL languages and

HLS such as Impulse-C, DSPlogic , and Mitrion-C .Table 1 shows comparison adopted from this research.

Table 1 Discusses Tools Efficiency and Ease-of-Use.

 Average

difficulty

factor

(dx)

Normalized

average

difficulty factor

(δx)

Normalized

average ease-of-

use factor

(λx)(%)

Average

efficiency

(EX)

Normalized

average

efficiency

(ηx)

efficiency Ease-of

-use

Impulse-C 3.9727×10
-3

 0.4640 53.60 2.8196×10
3
 5.72 low easy

Mitrion-C 7.9112×10
-3

 0.9240 7.60 3.9122×10
3
 7.94 low difficult

DSPlogic 4.0383×10
-3

 0.4717 52.83 2.2975×10
4
 46.625 moderate easy

VHDL 8.5615×10
-3

 1 0 4.9277×10
4
 100 High difficult

Donald G. Bailey presents alternative classification for FPGA languages in his book [2] .this classification is depend on

dividing FPGA programming languages for image processing application into three categories (1) Hardware Description

Languages,(2) Software-Based Languages ,and (3)Visual Languages .Table 2summarized in table 2.

Table 2.programming languages and tools (second approach)

Basic Classification Secondary Classification Examples

1-Hardware

Description Languages

-- VHDL, Verilog HDL

2-Software-Based

Languages

a-Structural Approaches JHDL, Quartz, HIDE

b-Augmented Languages SystemC, ASC,SA-C, A|RT, Mitrion-C, Handel-C, Handel-

C Derivatives

c-Native Compilation

Techniques
Transmogrifier C, SUIF-Based Compilers, Impulse C,

Dime-C and DimeTalk , Catapault C, MATLAB Based

3-Visual Languages a-Behavioral vVHDL,

b-Dataflow Khoros Based, Simulink Based, others (like labview, PixelStreams)

c-Hybrid VERTIPH,

 ISSN 2394-7314

International Journal of Novel Research in Computer Science and Software Engineering
Vol. 3, Issue 1, pp: (140-158), Month: January-April 2016, Available at: www.noveltyjournals.com

Page | 142
Novelty Journals

Third classification for programming languages and tools presented by Richard Wain ,and others [3] can be summarized

in table 3 .

Table 3. programming language and tools (third approach)

Basic classification Examples

VHDL &Verilog a-Xilinx tools

b-FPGA Advantage Mentor Graphics tools

Pseudo-C High level languages a-Mitrion-C and Mitrion-IDE

b- Handel-C and Celoxica DK Design Suite.

c-Nallatech DIME-C and DIMETalk

Other languages and tools Like : SystemC, Catapult C, Impulse C, Carte, Streams C, AccelChip,

Starbridge, NAPA-C, SA-C, CoreFire, Trident compiler, DSPlogic, CHiMPS

For analog mixed signal modelling languages. Design and Reuse web site [4] presents an article[5] titled with Analog and

Mixed Signal Modelling Approaches comparative study between basic analog mixed signal approaches VHDL-

AMS,VERILOG-A,MATLAB SIMULINK,SPICE and system C-AMS. Also describe Challenges in AMS Design and

Modelling. Results taken from this article would be presents later.

Brian Holland, and others presented a Survey of C-based Application Mapping Tools based Application Mapping Tools

for Reconfigurable Computing for Reconfigurable Computing[6] .Table 4 discuss five basic categories of C based

languages discussed in this survey. Results taken from this study will be described in C to RTL tools in this research.

Table 4. Five Basic Categories of C based Languages

Open

Standard

Generic HDL

Multiple Platforms

Generic HDL (Optimize for

Manufacturer’s Hardware)

Targets a Specific

Platform/Configuration

RISC/FPGA

Hybrid Only

System C Mitrion C, Impulse

C, Catapult C

Handel C, DIME-C Streams C, SA-C,

Carte

Napa C

Embedded system design with FPGA book [7] in chapter 9 introduced CAPH Language for Implementing Stream-

Processing Applications on FPGAs .this research describes drawbacks of C to RTL languages or solutions. Also describes

CAPH language capabilities and advantages over traditional VHDL.CAPH language does not represented here .

A Comparative Evaluation study [8] is made between some of Automated HDL Generation tools or languages like

SPARK, ROCCC, and DWARV based on a dataset of roughly 140 C functions. The number of functions in each

application domain for DWARV and SPARK under consideration is depicted. These numbers represent the number of

kernels who's generated VHDL was successfully synthesized. Total number of functions for all application is equal to 158.

Also results taken from this research will be discussed later

This research [9]discusses the history of HLS, categorizes it into three time generation and identifies reasons why the

current or third generation HLS tools may be successful and proceeded where earlier generations(first and second

generations) tools failed. Also research discussed failure causes.

This research [10] presents a comparative study between twelve HLS languages based on number of features like ease of

implementation, test-bench generation, verification, and so on. Results will be discussed later.

The Design warrior's guide to FPGAs [11] describes in chapter 9 HDL design flow with comparison between VHDL and

VERILOG ,also chapter 11 discussed problems with traditional HDL based flows. Author prefers to divide HLS into three

categories: (A) System C based flows; (b) Augmented C/C++ based flows; and (c) Pure C/C++ based flows. Advantages

of using mixed language design and verification environments also discussed.

3. S/W AND H/W BASED LANGUAGES

In this section a comparison between hardware based languages (HDLs) and Software based languages(HLS Tools) is

made based on number of features like sequential/concurrent processing. Table 5 shows difference between software and

hardware based languages [2].

 ISSN 2394-7314

International Journal of Novel Research in Computer Science and Software Engineering
Vol. 3, Issue 1, pp: (140-158), Month: January-April 2016, Available at: www.noveltyjournals.com

Page | 143
Novelty Journals

Table 5.difference between S/W and H/W based languages for FPGA

 Hardware based languages(HDLs) Software based languages(HLS Tools)

processing Inherently concurrent Inherently sequential

Word width Data word width is optimized Fixed data word width (8,16,32 bits)

Time taken Time taken for task is depend on timing

constraints

Time taken is not considered

Memory

management

Memory is divided into a large number of small

blocks. Local variables are not implemented in

memory.

Software treats memory as single large

block, compiler may map local

variables to registers

Processes

communication

Parallel processes can communicate directly.

Communication relies on hardware

It uses shared memory (including

mailboxes) to communicate between

processes. Processes cannot

communicate directly.

Algorithm

representation

The algorithm is demonstrated by hardware

connection between blocks.

Saving current state is difficult.

Recursive algorithms are impractical.

An algorithm is demonstrated as a

sequence of instructions stored in

memory.

Other

advantages

Available for high level languages and high

capacity FPGA

Support floating point computation

4. FPD LANGUAGES

In this section our proposed categories for FPD languages will be discussed here with simple example. Basic FPD

language categories: (1)Early HDL languages,(2)No common use language,(3)Traditional and Widely Used

Languages,(4)Verification languages,(5)Control languages,(6)Rarely used and Alternative

Languages,(7)Tools,(8)Compilers .

4.1 Early HDL languages

Five languages will be discussed here in brief (A)PALASM, (B)CUPL-HDL, (C)ABEL-HDL, (D)LOLA, (E)AHDL.

4.1. 1. PALASM:

PALASM Stands for Programmable Array Logic Assembler. PALASM is an early hardware description language, used to

convert Logic functions and state transition tables to a fuse map for use with programmable array logic (PAL) devices.

PALASM provides more than just a logic description. It also provides, in the function table section, a set of tests to be

applied to the device after programming. The language was developed in the early 1980s. It is not case-sensitive language

[12].

This was an important language feature because device programming was not always successful. The devices could have

faulty programmable fuse elements, the programming equipment could be out of spec, or the logic equations themselves

could be incorrect. Providing hardware test data in the form of test vectors right in the design itself eliminated the vast

majority of later in-system problems [13].See a PALASM code for 4 bit counter with synchronous clear [14]

4.1.2. CUPL-HDL:

CUPL stands for Common Universal tool for Programmable Logic compiler. Assisted Technology released CUPL in

September 1983. It was the first high level language that supported multiple PLD families. First it was written in the C

language so it could be transferred to additional platforms.

The CUPL language supports any combination of state machine, truth table and Boolean entry methods .CUPL has

powerful features like the ability to compare a set of bits to a fixed binary, decimal and hexadecimal. CUPL is also

available as an integrated development package (IDP) for Microsoft Windows.

 ISSN 2394-7314

International Journal of Novel Research in Computer Science and Software Engineering
Vol. 3, Issue 1, pp: (140-158), Month: January-April 2016, Available at: www.noveltyjournals.com

Page | 144
Novelty Journals

CUPL includes simulator called CSIM. It uses for verifying logic specification files written in CUPL, it also allows the

creation of test vectors which may be down-loaded to a PLD programmer/tester. A PALASM-to-CUPL translator is

included to allow easy conversion of existing logic specification files written in PALASM [15].See a CUPL-HDL code

for 4 bit counter [16]

4.1.3. ABEL-HDL:

ABEL stands for Advanced Boolean Expression Language. The ABEL concept and basic compiler were created by Data

I/O's Applied Research Group in 1981 .Then it was continued by ABEL product development team. ABEL is now owned

by Xilinx Inc. ABEL is a Hardware description language and it includes a related set of design tools for

programming PLDs.

ABEL includes concurrent Boolean equations and truth table logic formats as well as a sequential state machine

description format. A pre-processor with syntax loosely based on DEC's Macro-11 is also included.

The Xilinx ABEL version of the ABEL-HDL compiler is supporting software functionally verifies ABEL-HDL designs

through simulation. The compiler then implements the designs in CPLDs [17].See A ABEL-HDL code for 4 bit counter

with look ahead carry [18].

4.1.4 LOLA:

Lola was created in 1992.LOLA is a simple and easy to learn hardware description language for describing synchronous,

digital circuits ,general hardware designs and particular coprocessor applications [19].

The Lola System is a toolbox containing of modules whose commands serve to specify, implement, and test digital

circuits. These notes represent its structure to the user of Lola and to the implementer of additional tools .LSB is the Lola

system base module which contains the definition of the central data structure used to describe digital circuits. Typically,

such a data structure is produced from a Lola text by the compiler, and thereafter used as argument for next processing

steps, such as simplification, analysis, comparison, simulation, and layout generation [20].LOLA homepage site is

[21].See LOLA code for N –bit binary counter [22].

4.1.5 AHDL:

AHDL stands for Altera Hardware Description Language. It may also refer to analog hardware description language.

AHDL is a high-level, modular language that is embedded in the Quartus II system. AHDL Text Design Files (.tdf) can be

created using the Quartus II Text Editor .AHDL file can be integrated with other types of design files in a hierarchical

design. AHDL is applicable for complex combinational logic, group operations, state machines, truth tables, and

parameterized logic design [23].

All language constructs are synthesizable.it is very easy to convert AHDL to Verilog code. In this language, there is more

control but less high-level support. A disadvantage of AHDL is that it is proprietary .See a simple AHDL up Counter code

[24].

4.2 No Common use languages:

In this section we will describe in brief rarely used languages. Table 6 describe No Common use languages and tools.

Table 6. No Common use languages and tools

Language/Tool Description

Confluence A functional HDL; has been discontinued

ELLA No longer in common use

ISPS Original HDL from CMU, no longer in common use

KARL KARlsruhe Language, a Pascalish hardware descriptive language, no longer in common use.

M A HDL from Mentor Graphics

CoWareC A C-based HDL by CoWare. Now discontinued in favor of SystemC

AHPL HDL Language developed at University of Arizona for representation of hardware for academics.

 ISSN 2394-7314

International Journal of Novel Research in Computer Science and Software Engineering
Vol. 3, Issue 1, pp: (140-158), Month: January-April 2016, Available at: www.noveltyjournals.com

Page | 145
Novelty Journals

4.3 Traditional and Widely Used Languages:

In this section we will divide traditional and widely used languages in two parts. The first part is analog mixed signal

languages (AMS) or analog languages, and the second part is digital languages.

4.3.1 Analog and Mixed Signal (AMS) languages:

VHDL-AMS, Verilog-AMS and System C-AMS allow modelling of discrete and continuous-time signals or a

combination of discrete and continuous signals. So it is clear that HDL languages can represent AMS systems at a higher

level of abstraction by bringing down the simulation time while providing the intended functionality of the design. A

comparison between AMS languages or modelling approaches (VHDL-AMS, Verilog-A, System C-AMS, and SPICE)

are made in [25].

VHDL-AMS is derived from VHDL language It includes analog and mixed-signal extensions (AMS) in order to define the

behaviour of AMS systems (IEEE 1076.1-1999).It is an industry standard modelling language for mixed signal circuits. It

provides both continuous-time and event-driven modelling semantics, and so is suitable for analog, digital, and mixed-

signal circuits. It is particularly well suited for verification of very complex analog, mixed-signal and RF integrated

circuits [26].

System C-AMS is an extension of System C that uses an open and layered approach. The base layer is the existing System

C 2.0 kernel.

Verilog-AMS is a derived from Verilog language. It extends the event-based simulator loops of Verilog/System

Verilog/VHDL, by a continuous-time simulator, which solves the differential equations in analog-domain. Analog events

can trigger digital actions and vice versa. It was created with the intent of enabling designers of AMS systems and

integrated circuits to create and use modules that encapsulate high-level behavioral descriptions as well as structural

descriptions of systems and components [27].

SAMSA is a new tool for the VHDL-AMS system's simulation in Matlab .This tool is developed to make possible

VHDL-AMS simulations in Matlab, a powerful scientific tool for numerical analysis, along with its associated complete

set of toolboxes. The purpose of SAMSA is to have a sole VHDL framework where analog, digital systems can be

designed and simulated [28].MATLAB Simulink tool can be used to model AMS systems if supporting libraries and

functions are available. Simulink has an inbuilt analog tool set which can be used for AMS modelling and the accuracy

results are comparable to that of spice simulation results.

4.3.2 DIGITAL LANGUAGES:

Digital languages consists of two types visual languages (as vVHDL) and non-visual languages. Here we would describe

examples of non-visual languages. For more information about visual languages see [11].

A. VHDL, THDL, VITAL:

In 1981, the US DoD began writing the specifications for the Very-High-Speed Integrated Circuit (VHSIC) program. The

intent was to be able to accurately describe the behaviour of circuits for documentation, simulation, and later for synthesis

purposes. This program was known as VHDL. After two years of developing VHDL by IBM , Intermetics, and Texas

instruments ,VHDL was finally released in August of 1985.

Due to the popularity of the language, the IEEE convened a committee to formalize the language. The current standard

IEEE 1076-2008 is known informally as VHDL-2008.

VHDL is a large, complex, and powerful language. Although the language is feature-rich, many designs only require a

small subset of the total capabilities[29].

The advantage of VHDL are : (1) It allows the behaviour of the required system to be modelled and verified before

synthesis tools translate the design into real hardware circuits,(2)VHDL allows the description of a concurrent system.

VHDL is a dataflow or concurrent language, unlike other computer languages such as C which runs sequentially

(3)VHDL is multipurpose , portable language. Here is VHDL code for 4 bit up/down counter [31].

VITAL (VHDL Initiative towards ASIC Libraries) is an initiative to accelerate the development of sign-off quality ASIC

 ISSN 2394-7314

International Journal of Novel Research in Computer Science and Software Engineering
Vol. 3, Issue 1, pp: (140-158), Month: January-April 2016, Available at: www.noveltyjournals.com

Page | 146
Novelty Journals

macro-cell simulation libraries written in VHDL by Leveraging existing methodologies of model development [30].

THDL (Templated HDL inspired by C++) an extension of VHDL with inheritance, advanced templates and policy

classes. Table 7 shows comparison between Verilog &VHDL+VITAL [11].

Table 7. Comparison between Verilog &VHDL+VITAL

 Verilog VHDL+VITAL

Source C-based Ada based

Learn Relatively easy to learn Difficult to learn

Data types Fixed data types Abstract data types

Constructs Interpreted constructs Compiled constructs

Gate-level timing Good Less good

Design reusability limited Good

Design management limited Good

Structure replication No Supported

Wide acceptance in West Coast East Coast

B. VERILOG-HDL, System VERILOG:

Verilog HDL originated at Automated Integrated Design Systems (later renamed as Gateway Design Automation) in 1985.

Verilog HDL was designed by Phil Moorby, who was later to become the Chief Designer for Verilog-XL and the first

Corporate Fellow at Cadence Design Systems. Gateway Design Automation grew rapidly with the success of Verilog-XL

and was finally acquired by Cadence Design Systems, San Jose, CA in 1989. Verilog was invented as simulation language.

Use of Verilog for synthesis was a complete afterthought.

Cadence Design Systems decided to open the Verilog language to the public in 1990, and thus OVI (Open Verilog

International) was born. Until that time, Verilog HDL was a proprietary language, being the property of Cadence Design

Systems. When OVI was formed in 1991, a number of small companies began working on Verilog simulators, including

Chronologic Simulation, Frontline Design Automation, and others. Now there is variety of Verilog simulators available

from many sources. For more details see Verilog homepage [32].A simple Verilog counter code could be seen [33].

Icarus Verilog is an open source compiler implemented for the IEEE-1364 Verilog HDL. It uses the Verilog to develop

the source code for the design. The developed design can be targeted to FPGA and code modification is possible. Icarus

Verilog V 0.8 supports the synthesis and V0.9 is only intended for simulation process. Official web site [34].

System Verilog is a superset of Verilog-2005, with many new features and capabilities to aid design verification and

design modeling. As of 2009, the System Verilog and Verilog language standards were merged into System Verilog 2009

(IEEE Standard 1800-2009). OVM stands for open-source System Verilog verification methodology [35].A simple

up/down counter example is here [36].

Many of the System Verilog and Verilog 2001 enhancements are already available in the VHDL language. There is also a

new VHDL enhancement effort underway that will add test bench and expanded assertions capabilities to the language

(the two areas where System Verilog will provide value over VHDL 2002).

The advent of hardware verification languages such as OpenVera, and Verisity's e language encouraged the development

of Superlog by Co-Design Automation Inc. Co-Design Automation Inc was later purchased by Synopsys. The foundations

of Superlog and Vera were donated to Accellera , which later became the IEEE standard P1800-2005: System Verilog.

Overview comparisons between VHDL, Verilog and System Verilog can be seen here [37].

4.4. Verification languages (ex: PSL):

Ensuring that a design's implementation satisfies its specification is the foundation of hardware verification .The

Accellera Property Specification Language (PSL) was developed to address these shortcomings in verification process. It

gives the design architect a standard means of specifying design properties using a concise syntax with clearly-defined

 ISSN 2394-7314

International Journal of Novel Research in Computer Science and Software Engineering
Vol. 3, Issue 1, pp: (140-158), Month: January-April 2016, Available at: www.noveltyjournals.com

Page | 147
Novelty Journals

formal semantics. Also, it enables the RTL implementer to capture design intent in a verifiable form, while enabling the

verification engineer to validate that the implementation satisfies its specification through dynamic (means, simulation)

and static (means,, formal) verification means. Furthermore, it provides a means to measure the quality of the verification

process through the creation of functional coverage models built on formally specified properties. Plus, it provides a

standard means for hardware designers and verification engineers to rigorously document the design specification

(machine-executable) [38].See an example of Verilog up-down counter code and related PSL assertions for it here [39].

PSL was specifically developed to fulfil the following general hardware functional specification requirements:(1)Easy to

learn, write, and read ,(2)Concise syntax ,(3)Rigorously well-defined formal semantics ,(4)Expressive power, permitting

the specification for a large class of real world design properties ,(5)Known efficient underlying algorithms in simulation,

as well as formal verification.

PSL works alongside a design written in VHDL or Verilog. In future it may be extended to work with other languages.

Properties written in PSL may be embedded within the HDL code or placed in different files [38].

4.5 Control Languages (ex: Tcl):

TCL (Tool Command Language) is a very powerful and easy to learn dynamic programming language[40]. It is suitable

for a very wide range of uses, including web and desktop applications, networking, administration, testing and many

more. Open source and business-friendly, Tcl is a mature yet evolving language that is truly cross platform, easily

deployed and highly extensible. Tcl can apply in a typical FPGA tool flow :(1)Xilinx ISE and Tcl [41],(2)Quartus II and

Tcl[42],(3)Microsemi Libero and Tcl [43].

TCL homepage is [44]

4.6 Rarely used and Alternative Languages :

In this section we will divide rarely used and Alternative languages in two categories first is digital software based

languages and the second is PCB-HDL based languages. First category can be divided in two types structural and non-

structural languages. Second category only contains PHDL language.

4.6.1 Digital Software Based Languages:

A. Non Structural Languages:

1. RHDL, HVL:

RHDL (Ruby Hardware Description Language) is an HDL based on the Ruby programming language. Developer idea in

developing RHDL was to build an HDL on an object oriented programming language to allow HDL features (concurrent

processes, signals, parallelism etc.) in addition to features which come with a modern, object oriented, and agile

programming language like Ruby (www.ruby-lang.org). The intent is to allow simulation, verification and test bench

creation features. RHDL is based on Ruby should allow modelling at a higher level of abstraction than is possible with

VHDL or Verilog so it is not easy to translate RHDL to VHDL and/or Verilog.

A Hardware Verification Language, or HVL, is a programming language used to verify the designs of electronic

circuits written in a HDLs. HVLs typically include features of a high-level programming language as well as features for

bit-level manipulation similar to those found in HDLs.

RHDL users don't need to know much Ruby only small knowledge is enough in order to benefit from RHDL .RHDL is

not a new language. It is a set of modules (code libraries) that allow Ruby to act like an HDL. Ruby has a concept called

code blocks; these blocks are made into lexically scoped closures in order to define a domain specific language like

RHDL without having to write a separate parser. RHDL can be used as HVL with a few more additions

[http://rhdl.rubyforge.org/].See RHDL counter code here [45] .

2. Bluespec, Lava (based on Haskell):

Bluespec, Inc. is a semiconductor tool design company co-founded by Prof. Arvind of MIT . Arvind had developed

the Bluespec language, a high-level functional hardware description programming language which was

essentially Haskell extended to handle chip design and electronic design automation in general. Bluespec is partially

 ISSN 2394-7314

International Journal of Novel Research in Computer Science and Software Engineering
Vol. 3, Issue 1, pp: (140-158), Month: January-April 2016, Available at: www.noveltyjournals.com

Page | 148
Novelty Journals

evaluated to convert the Haskell parts and compiled it to the term rewriting system (TRS). It can be found in a System

Verilog frontend. Bluespec has two product lines mainly for ASIC and FPGA hardware designers and architects. Bluespec

supplies high-level synthesis (ESL logic synthesis) with RTL. The first Bluespec workshop was held on in 2007 at MIT.

Counter example using Bluespec [46]. Bluespec is basically Haskell with some extra syntactic constructs for the term

rewriting system (TRS) that describes what the hardware does. The type system has been extended with types of numeric

kind [47].

Lava is an experimental, visual object-oriented, interpreter-based on Haskell programming language with an

associated programming environment called Lava Programming Environment (Lava PE) that uses structure editors

instead of text editors. Only comments, constants, and new identifiers can be entered as text.Declarations are represented

in LavaPE as tree structures whose subtrees may be collapsed or expanded. The properties of the declared

Lava entities can be edited through pop-up dialogs.Although executable code has a traditional text representation in

LavaPE, it can be edited only as complete syntactic units, rather than character by character. [48].there is no available

examples here.

3. MyHDL(based on python):

MyHDL is developed by Jan Decaluwe.It is a Python based hardware description language (HDL). MyHDL include

many features like the ability to generate a test bench with test vectors in VHDL or Verilog ,the ability to convert lists of

signals, the ability to convert output verification, the ability to do Co-simulation with Verilog, and An advanced data type

system. MyHDL's translator tool automatically writes conversion functions when the target language requires them.A

MyHDL design can be automatically converted to equivalent Verilog or VHDL code . MyHDL and conversion is

probably the best solution available for language-neutral design. It is obviously superior to manual conversion. Moreover,

direct convertors between Verilog and VHDL don't work very well. Using a syntactically Python language as the starting

point is an easier way to a create a high-quality conversion tool [49].An example of bi-directional 4-bit Johnson counter

with stop control could be seen in MYHDL homepage [49].

4. PSHDL:

PSHDL is an open source , board independent, and plain and simple hardware description language. Beta version web

interface that was written in Dart with Web UI include the following New features the page scales are much better with

lower resolutions, fast simulation, LEDs are dimmed with the duty cycle, ability to create board definition files and

synthesis definition files ,Ports can be visually located on the PCB, the ace editor recycles the session, which stores

history and cursor position, and dirty marking is based on SHA checksum [50].

B. Structural Languages:

1. JHDL, Hardware Join Java (HJJ):

JHDL (Just-Another Hardware Description Language) is a low-level structural hardware description language, focused

on building circuits via an Object Oriented approach that bundles collections of gates into Java objects. Implemented as a

toolset and class library on top of the Java programming language, its primary use is for the design of digital circuits for

implementation in FPGAs. Particular attention was paid to supporting the Xilinx series of chips [51].JHDL was

developed at BYU in the Configurable Computing Laboratory, the project initiated in 1997.The latest update to the JHDL

project was made in 2006 according to the official JDHL website[http://www.jhdl.org/]. An example for JHDL Counter

cod is here [52]. JHDL doesn't support all forms of familiar digital systems design . In particular, asynchronous loops are

unsupported and, it gives an error with simulator.Also behavioural synthesis is not yet fully supported. JHDL is found to

be a very effective way to do FPGA design and will continue to use it to develop our applications. JHDL language

features include structural hardware design, flexible module generators, table-generated finite state machines(FSM),a

graphical "Workbench" toolkit,.

module AMR {

 register uint<4> counter=counter+1;

 out bit<4> led;

 led=counter{3:0};

}

 ISSN 2394-7314

International Journal of Novel Research in Computer Science and Software Engineering
Vol. 3, Issue 1, pp: (140-158), Month: January-April 2016, Available at: www.noveltyjournals.com

Page | 149
Novelty Journals

The Java Optimized Processor (JOP) has been created by Martin Schoeberl as part of his Ph.D. project (2005) and then

being developed as an open source project. JOP is a soft-core Java-processor written in VHDL which makes it possible to

execute Java code on FPGA. JOP is designed to be time predictable, and the number of Java byte codes (JVM

instructions set) can be predicted in clock cycles. It is therefore possible to build real time Java applications. JOP is an

open source, Additional information about JOP can be found at the official site [http://www.jopdesign.com] [53].

4.6.2 PCB-HDL based Languages:

1. PHDL:

PHDL is an open-source research-based Hardware Description Language (HDL) created at Brigham Young University

that models text-based schematics for Printed Circuit Boards (PCBs). Its primary objectives for increasing designer

productivity are to overcome limitations of scale, collaboration, and design reuse inherent with graphical schematic

capture CAD tools. An eclipse plugin; developed with the Xtext frame work; provides many desirable integrated

development environment (IDE) features to PHDL users Xtext. Standalone functionality is also provided for those who

wish to work from the command-line and use their own editor. the plugin include many features such as highlighting,

content assist, and automatic code completion[54]. An example for 4-bit counter

4.7. Tools:

Tools can be divided into three types web based tools, C to RTL tools, and graphical tools.

4.7.1 C to RTL Tools:

C to HDL or C to RTL tools also known as C-based hardware description languages (CHDLs) is a type of HLS tools.

Generally HLS take functional specifications in high-level languages (in this c_ based language) and generate RTL or

gate-level specifications that can be used in well-established RTL synthesis and place-and-route flows. The generated

RTL is optimized to the specific target ASIC or FGPA technology.. The converted code can then be synthesized and

translated into a hardware device such as a field-programmable gate array. The limitations of Hardware C and similar

CHDLs are rooted in the modification of the C language semantics to support hardware constructs or requirements, thus

making each CHDL a different dialect of C. Table.8 and 9 shows a brief abstraction of some of these HLS tools based on

C.

device Counter is

 attr refPrefix = "U";

 attr pkg_type = "16-TSSOP";

 attr supplier = "Jameco

Electronics";

 attr cost = "3.49";

 pin B = {1};

 pin Qb = {2};

 pin Qa = {3};

 pin Down = {4};

 pin Up = {5};

 pin Qc = {6};

 pin Qd = {7};

 pin gnd = {8};

 pin D = {9};

 pin C = {10};

 pin _Load = {11};

 pin _Co = {12};

 pin _Bo = {13};

 pin clr = {14};

 pin A = {15};

 pin vcc = {16};

end device Counter;

 ISSN 2394-7314

International Journal of Novel Research in Computer Science and Software Engineering
Vol. 3, Issue 1, pp: (140-158), Month: January-April 2016, Available at: www.noveltyjournals.com

Page | 150
Novelty Journals

Table 8 .Shows brief abstraction of C to Verilog tools, C to HDL tools and derive C languages

C to Verilog C to HDL Derived C languages

C to Verilog Autopilot is developed by AutoESL .it compiles

HDL code from various C_based languages such as

C++, System C, ANSI. Xilinx revealed Vivado

Electronic system level (ESL) as the new name for

this tool [55].

SystemC

Handel-C

bambu (free and open source

ANSI C to Verilog tool based

on GCC compiler)

ROCCC is free and open source C to HDL tool.it

uses Eclipse as its use design environment

Impulse C

SA-C

C-to-Verilog tool (NISC) from

University of California, Irvine

 Mitrion-C

Vsyn (C to Verilog, Russian

project)

Table 9. Shows brief abstraction of compiler tools , Synthesis tools and framework

Compiler Tools Synthesis tools and framework

Altium Designer , Nios II C-to-Hardware Acceleration

Compiler from Altera

Catapult C tool [56]

CebaTech's C2R Compiler , DIME-C

Cynthesizer C/C++ to RTL.

Co-processor C to RTL synthesizer [57].

Agility compiler which is used to synthesize

SystemC.

Symphony C compiler .the entry languages are ANSI C and

C++.

Trident compiler for floating point algorithms written in C.

Streams C

HercuLeS is a high-level synthesis tool that

automatically generates RTL VHDL for non-

programmable hardware

FpgaC compiler works with C language and it is able to create

a binary file to be downloaded into the FPGA card[58].

Compaan [with Eclipse SDK tool as its user environment]

developed by compaan design for Xilinx FPGA [10].

SPARK is a C-to-VHDL high-

level synthesis framework that employs a set of

innovative compiler, parallelizing compiler,

and synthesis transformations to improve the

quality of high-level synthesis results

In this section ,a collection of comparative study between C to RTL tools will be represented here .A Comparative

Evaluation study [59] is made between some of Automated HDL Generation tools or languages like SPARK, ROCCC,

and DWARV based on a dataset of roughly 140 C functions. The number of functions in each application domain for

DWARV and SPARK under consideration is depicted. These numbers represent the number of kernels who's generated

VHDL was successfully synthesized. Total number of functions for all application is equal to 158. Table 10 summarize

results between these compilers.

Another comparison ;Survey of C-based Application Mapping Tools for Reconfigurable Computing [60] ; based on

implementing three classical algorithms Finite-Impulse Response (FIR), N-Queens and Radix Sort using DIME-C,

Handel C, Impulse C, and VHDL. Experiments performed on Nallatech BenNUEY-PCI card with VirtexII-6000 FPGA.

Table 11 summarize results of this comparison with a small approximation (research describe results in bar charts).

 ISSN 2394-7314

International Journal of Novel Research in Computer Science and Software Engineering
Vol. 3, Issue 1, pp: (140-158), Month: January-April 2016, Available at: www.noveltyjournals.com

Page | 151
Novelty Journals

Table 10.Comparison results between DWARV, ROCCC ,and SPARK compilers

Compiler Resource

Specificat

ion

Optimizat

ions

Guidance

Array

dimensi

on

High Level

Constructs

(%)

Supported

Application

s (%)

Reason

For

Limited

Support

Number of

Function per

application

domain (%)

summary

DWAR

V

NO N/A 1D 62% 50% Structure

s

51/158=32.8

%

Least designer

intervention ,

more relaxed

restrictions ,does

not offer any

optimization

ROCCC NO Yes 2D 62% 6% Perfectly

Nested

Loops

-- hides the

hardware details

from designer,

highly application

oriented ,requires

detailed guidance

to perform high

level

optimizations

SPARK

V1.2

YES Yes 1D 74% 50% Constant

size

arrays

44/158=27.8

%

least automation,

more relaxed

restrictions

required

specification of

the resources and

optimization

Table 11. Comparison between Three based Languages with VHDL Related to Three Algorithms.

Algorithms Resource utilization (%) DIME-C Handel C Impulse C VHDL

Finite-Impulse

Response

Slices 10-20% 15-20% 30-40% 0-10%

Multiplier 30-40% 30-40% 30-40% 30-40%

Blocks Ram Less than 10% Less than 10% Less than 10% Less than 10%

Clock frequency High 100% About 80% 50-60% About 80%

N-Queens Slices Less 20-30% More than 80% 30-40% More 20-30%

Clock frequency 80-90% 25% 65% 65%

Radix Sort Slices 10% Less than 10% 30% Less than 10%

Blocks Ram 10-20% 10-20% 10-20 % less 10-20%

Clock frequency 100% 50% 55% 100%

Other comparison uses more languages and another features like abstraction level, test bench generation, implementation,

and FPGA slices [61, 10].These two researches depends on same evaluation test application .the application chosen for

these studies was Sobel edge detection algorithm. The complexity of the system design can be made easily with these

tools .The design verification is made faster with the help of HLS.

It is clear that HLS do not provide a direct algorithmic to gate design path. In a similar way high performance architecture

programmer do, designers need to modify and rewrite their source code so as to get the tool to derive the hardware

 ISSN 2394-7314

International Journal of Novel Research in Computer Science and Software Engineering
Vol. 3, Issue 1, pp: (140-158), Month: January-April 2016, Available at: www.noveltyjournals.com

Page | 152
Novelty Journals

architecture they actually want for their application. Even though such a rewrite process is much easier to carry with a

HLL, it still leaves a lot of burden to the designer [62].

Table 12.Shows advantages and disadvantages of C to HDL tools

Advantages Disadvantages

Wide acceptance

Required HDL knowledge is significantly reduced or

eliminated

Programs still require some tweaking for hardware

compilation. C programs sometimes rely on features

which are difficult or impossible to implement in

hardware (as dynamic memory allocation). So a

minimum knowledge of hardware design principle is

actually required.

Time to preliminary results is much less than manual

HDL

Reduced development time can come at cost of

performance, resource utilization and power

consumption.

Software-to-hardware porting is considerably easier

Visualization of C hardware is far easier and fast for

scientific community.

It relate to leaving implementation details to the

design algorithms and tools, including the ability to

determine the precise timing of operations, data

transfers, and storage [63].for more benefits of HLS

tools in general [64].

Mapper instructions are many times more powerful

than CPU instructions, but FPGA clocks are many

times slower.

The productivity of designers increases with the

abstraction level, as demonstrated by practices in both

the software and hardware domains

Allow designers to deliver an increasing larger

number of integrated systems as compared to

integrated circuits

Facilitate the verification process of the generated

hardware.

In general the code has to undergo various

optimizations and transformations before the actual

HDL generation, Optimized Software C is not equal

to Optimized Hardware C

Mappers can parallelize and pipeline C code however they generally cannot automatically

instantiate multiple functional units.

compiler has to identify parallelism in the sequential

code before mapping it onto the target hardware

because C is intrinsically sequential whereas

hardware is truly concurrent[65,60].

4.7.2. Graphical Tools:

The LabView FPGA Module allows LabView to target FPGAs on NI Reconfigurable I/O hardware (RIO) so scientists

and engineers can take advantage of the performance and flexibility of FPGAs without needing to learn the low-level

design tools.

Using the LabView FPGA Module, a custom control and measurement hardware can be developed without any prior

knowledge of HDL or board level hardware design. Using LabView is also an intuitive way to represent the timing,

concurrency and parallelism of FPGA hardware. Measurement and control system components can be easily integrated

with FPGA design using the LabView FPGA Interface. National Instruments (NI) offers a number of targets that include

the R Series line of data acquisition products, the PXI Timing and Synchronization Module, the Compact Vision System

and the rugged and modular Compact RIO platform [66].A Counter example designed by lab view [67, 68]

 ISSN 2394-7314

International Journal of Novel Research in Computer Science and Software Engineering
Vol. 3, Issue 1, pp: (140-158), Month: January-April 2016, Available at: www.noveltyjournals.com

Page | 153
Novelty Journals

Data I/O’s Azido, is a graphical hardware development environment. One of the features that distinguish it from

schematic capture and other graphical tools is the automatic compile-time resolution of data types. This enables graphical

polymorphism, and allows recursive instantiations of an object within itself. Azido provides a large library of logic,

arithmetic, and control objects called the CoreLib, and defines a framework for providing support for arbitrary target

platforms [69].

The objective of the MATCH (Matlab Compiler for Heterogeneous computing systems) compiler project is to make it

easier for the users to develop efficient codes for configurable computing systems .It allows Matlab code to synthesised

directly to an FPGA [70].Since it was developed, its technology was transferred to a start-up company, AccelChip. In

2006, Xilinx acquired AccelChip and the technology is now called as AccelDSP (Xilinx, 2009a). The design flow still

follows the principles outlined above. The MATLAB code has to follow a particular coding style that assumes streamed

input and output data.

Compaan/Laura is another MATLAB/C-based tool. This toolset converts a sequential MATLAB design into a network

of independent processes, which is more dataflow orientated. The revised processing model is easier to map to hardware

.This tool is used for systems that execute high-performance real-time signal processing and multimedia applications [71].

Xilinx System Generator is used in conjunction with Simulink and HDL Coder. Background a unified environment.

System Generator provides a block-diagram front-end which takes advantage of the Xilinx CoreGen tool for generating

high-performance computation cores. The abstractions shown by both Simulink and System Generator indicate a heavy

focus on dynamic systems and signal processing applications [69].

4.7.3 Web based Tools (EDA Playground):

EDA Playground gives engineers immediate hands-on exposure to simulating SystemVerilog, Verilog, VHDL,

C++/SystemC, and other HDLs. All you need is a web browser. The goal is to accelerate learning of design/testbench

-- Generated by MATLAB 7.14 and HDL Coder 3.0

-- ---

-- Module: counter2

-- ---

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE IEEE.numeric_std..ALL;

ENTITY counter2 IS

 PORT(clk : IN std_logic; reset : IN std_logic; clk_enable : IN std_logic);

END counter2;

ARCHITECTURE rtl OF counter2 IS

 SIGNAL enb : std_logic;

 SIGNAL HDL_Counter_count : unsigned(3 DOWNTO 0); -- ufix4

 SIGNAL HDL_Counter_out1 : unsigned(3 DOWNTO 0); -- ufix4

BEGIN

 enb <= clk_enable;

 HDL_Counter_process : PROCESS (clk, reset)

 BEGIN

 IF reset = '1' THEN

 HDL_Counter_count <= to_unsigned(0, 4);

 ELSIF clk'EVENT AND clk = '1' THEN

 IF enb = '1' THEN

 HDL_Counter_count <= HDL_Counter_count + 1;

 END IF;

 END IF;

 END PROCESS HDL_Counter_process;

 HDL_Counter_out1 <= HDL_Counter_count;

 ISSN 2394-7314

International Journal of Novel Research in Computer Science and Software Engineering
Vol. 3, Issue 1, pp: (140-158), Month: January-April 2016, Available at: www.noveltyjournals.com

Page | 154
Novelty Journals

development with easier code sharing, and with simpler access to EDA tools and libraries. EDA Playground is

specifically designed for small prototypes and examples.

With a simple click, run your code and see console output in real time. Pick another simulator version and run it again.

View waves for your simulation using EPWave browser-based wave viewer.

Save your code snippets. Share your code and simulation results with a web link. Perfect for web forum discussions or

emails. Great for asking questions or sharing your knowledge [72].

4.8. Compilers (ex: PERL):

Perl is a high-level programming language. Larry Wall invented Perl and thousands have contributed their time making it

a very powerful tool. Perl borrows heavily from the C programming language and copies the really useful bits from sed,

awk, Unix shell, and many other tools and languages.

Perl's process, file, and text manipulation facilities make it particularly well-suited for tasks involving automatic code

generation, report filtering, Netlist patching, generating test vectors and controlling tools.

Perl has been used for translating between related languages: VHDL to Verilog, Xilinx Netlist Files to VHDL, VHDL to

SystemC, etc. Source files with low originality are prime candidates for automatic generation. Perl is also useful for

Coding Style conformance checking and enforcement [73].

Perl has been used for translating between related languages: VHDL to Verilog, Xilinx Netlist Files to VHDL, VHDL to

SystemC, etc. Source files with low originality are prime candidates for automatic generation. VHDL engineers regularly

write test benches. Perl is also useful for Coding Style conformance checking and enforcement.

5. CONCLUSION

From this study we conclude that there are many languages and systems that can be used for programming FPGA, for

Example SA_C, Handle_C, Impulse_C are powerful language for image, video processing application, VHDL,

VERILOG languages are difficult to learn and need a background knowledge about hardware devices, but they have a

wide-ranging support, both in terms of software development tools and vendor support. AHDL has more control but less

high-level support.

There are moves to raise the abstraction level of the design in order to reduce the complexity of programming in HDLs,

creating a sub-field called high-level synthesis. Companies such as Cadence, Synopsys and Agility Design Solutions are

promoting SystemC as a way to combine high level languages with concurrency models to allow faster design cycles

for FPGAs than is possible using traditional HDLs. Approaches based on standard C or C++ (with libraries or other

extensions allowing parallel programming) are found in the Catapult C tools from Mentor Graphics, the Impulse C tools

from Impulse Accelerated Technologies, and the free and open-source ROCCC 2.0 tools from Jacquard Computing Inc.

Annapolis Micro Systems, Inc.'s CoreFire Design Suite and National Instruments LabVIEW FPGA provide a

graphical dataflow approach to high-level design entry and languages such as SystemVerilog, SystemVHDL, and Handel-

C seek to accomplish the same goal, but are aimed at making existing hardware engineers more productive, rather than

making FPGAs more accessible to existing software engineers. It is also possible to design hardware modules

using MATLAB and Simulink using the Mathworks tool HDL Coder or Xilinx System Generator (XSG)

from Xilinx (formerly Accel DSP).It is easier to create more readable and safer coding with Java which is also platform

independent. The use of JOP will facilitate the acceptance of Java for embedded systems, and furthermore Java can

broaden the use of FPGA.

Table 13 Shows proposed overview table of all PLD languages, tools, compilers.

Languages Early HDL languages -- PALASM, ABEL,AHDL,CUPL , LOLA(simple

language used for teaching)

No common use -- ELLA, ISPS, KARL,M (Mentor

Graphics),Confluence

Rarely used Digital , Non Dart BASED :PSHDL(generate VHDL CODE,

 ISSN 2394-7314

International Journal of Novel Research in Computer Science and Software Engineering
Vol. 3, Issue 1, pp: (140-158), Month: January-April 2016, Available at: www.noveltyjournals.com

Page | 155
Novelty Journals

REFERENCES

[1] Esam El-Araby1 , Mohamed Taher1 , Mohamed Abouellail1 , Tarek El-Ghazawi1 , and Gregory B. Newby2," a

comparative analysis of high level programming for reconfigurable computers: methodology and empirical study",

3rd Southern Conference on Programmable Logic, 2007.

[2] Donald G. Bailey ,"Design for Embedded Image Processing on FPGAs", August 2011.

[3] Richard Wain, Ian Bush, Martyn Guest, Miles Deegan, Igor Kozin and Christine Kitchen ,"An Overview of FPGAs

and FPGA Programming"; Initial experiences at Daresbury, Council for the Central Laboratory of the Research

Councils ,November 2006 Version 2.0.

[4] http://www.design-reuse.com/

[5] http://www.design-reuse.com/articles/22773/analog-mixed-signal-modeling.html

and Alternative

languages

Software based

languages

Structural

approaches

Alternative syntax, web interface)

Ruby based: RHDL.

Python based: MYHDL(generates VHDL code,

Alternative syntax)

Java based: JOP, Hardware Join Java (HJJ)

Haskell based: Bluespec, Lava, Hydra, HHDL

Haskell and Verilog based: Blue spec System

Verilog (BSV)

Structural

approaches

Java based: JHDL

Block composition based :Quartz

Prolog based system :HIDE

PCB HDL -- PHDL(Open source research based) ,EDA

solver

Widely used

Traditional

languages

analog Non visual ,VHDL-AMS, Analog Hardware Descriptive

Language, Spectre HDL

, VERILOG-AMS,HDL-A

digital Non visual VHDL, VERILOG-HDL, system Verilog,

THDL++(VHDL extension)

Visual

languages

Behavioural :VVHDL

Dataflow: Khoros based, Simulink based,

others (like labview, pixel stream)

Hybrid:VERTIPH

Verification(HVL) -- PSL,UVM,OVM, System Verilog, Open

Vera, e, and System C

Control language -- TCL, System TCL

Tools C to RTL(languages, tools)

High Level Synthesis tools(HLS)

Software

based

languages

Augmented

languages

SYSTEM-C,HANDEL-C,SA-C ,STREAM-C,

ESys.net, Co WareC (c-based), ParC (Parallel

C++),ASC, Mitrion-C, A/RT, Handel-C

derivatives (Bach-C).

Software

based

languages

Native

compilation

techniques

Transmogrifier C,SUIF-Based Compiler

,Impulse C, Dime-C, Dime-Talk, Catapault C,

Matlab based

Web based tool -- www. Edaplayground.org

Graphical tools(HLS) -- National Instrument’s LABVIEW, Matlab HDL

coder, SAMSA tool(analog), Xilinx System

Generator, Data I/O’s Azido

Compilers PERL, C++, PYTHON, Csh, CUPL,PSHDL (ONLINE compiler)

 ISSN 2394-7314

International Journal of Novel Research in Computer Science and Software Engineering
Vol. 3, Issue 1, pp: (140-158), Month: January-April 2016, Available at: www.noveltyjournals.com

Page | 156
Novelty Journals

[6] http://ufdcimages.uflib.ufl.edu/UF/00/09/47/49/00002/MAPLD05_Holland.pdf

[7] Peter Athanas, Nicolas Sklavos, Dionisios Pnevmatikatos," Embedded Systems Design with FPGAs", Springer

Science Business Media, LLC 2013, pp 201-224.

[8] Yana Yankova, Koen Bertels, Stamatis Vassiliadis, Roel Meeuws, Arcilio Virginia," Automated HDL Generation:

Comparative Evaluation" ,IEEE International Symposium on Circuits and Systems, 2007. ISCAS 2007.

[9] Grant Martin, Gary Smith, "High-Level Synthesis: Past, Present, and Future, IEEE Design & Test of

Computers",2009.

[10] Wim Meeus · Kristof Van Beeck · Toon Goedemé · Jan Meel · Dirk Stroobandt," An Overview of Today’s High-

Level Synthesis Tools", Springer Science and Business Media, LLC 2012.

[11] Clive "Max" Maxfield ,"The Design Warrior's Guide to FPGAs" ,Mentor Graphics Corporation and Xilinux,2004.

[12] Lattice Semiconductor Corp ,"Lattice Generic Array Logic Handbook OCR", 1986.

[13] David Pellerin, Scott Thibault, "Practical FPGA Programming in C" , Prentice Hall PTR, April 22, 2005.

[14] http://en.wikipedia.org/wiki/PALASM

[15] "CUPL - The Universal Language For Programmable Logic" (Press release). San Jose, CA: Assisted Technology,

Inc. 1983. An early 1983 pre-release datasheet for CUPL, CUPL borchur.

[16] Logical Devices, Inc.(LDI) , CUPL Programmer's Reference Guide,1997.

[17] Lee, Kyu Y.; Holley, Michael; Bailey, Mary; Bright, Walter. "A High-Level Design Language for Programmable

Logic Devices". VLSI Design (Manhasset NY: CPM Publications), June 1985.

[18] http://en.wikipedia.org/wiki/Advanced_Boolean_Expression_Language

[19] Stefan Hans-Melchior Ludwig," Fast Hardware Synthesis Tools and a Reconfigurable Coprocessor", PHD thesis,

Swiss Federal Institute of Technology Zurich,1997.

[20] Niklaus Wirth ," LOLA system notes", institute of computer system,1995

[21] http://www.cs.inf.ethz.ch/projects/lola/lola_lang/

[22] Hans Eberle," Tools for Digital Circuit Design using FPGA", institute of computer system, 1994.

[23] http://quartushelp.altera.com/14.1/mergedProjects/hdl/ahdl/ahdl_intro.htm

[24] http://en.wikipedia.org/wiki/Altera_Hardware_Description_Language

[25] http://www.design-reuse.com/articles/22773/analog-mixed-signal-modeling.html

[26] Christen E., Bakalar K.,"VHDL-AMS-a hardware description language for analog and mixed-signal

applications",Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on [see also Circuits

and Systems II: Express Briefs, IEEE Transactions on] Volume 46, Issue 10, Oct. 1999.

[27] Accellera, "Verilog-AMS Language Reference Manual Analog & Mixed-Signal Extensions to Verilog-HDL",

Version 2.1, January 2003.

[28] M. Zorzi, N. Special, G. Masetti DEIS, "A New VHDL-AMS Simulation framework in Matlab", IEEE International

Behavioral Modeling and Simulation Workshop,2002.

[29] William Kafig, VHDL 101, Elsevier Inc , 2011.

[30] http://vhdl.renerta.com/mobile/source/vhd00080.htm

[31] https://startingelectronics.org/software/VHDL-CPLD-course/tut19-up-down-counter/

[32] http://www.verilog.com/

 ISSN 2394-7314

International Journal of Novel Research in Computer Science and Software Engineering
Vol. 3, Issue 1, pp: (140-158), Month: January-April 2016, Available at: www.noveltyjournals.com

Page | 157
Novelty Journals

[33] http://en.wikipedia.org/wiki/Verilog

[34] http://iverilog.icarus.com/

[35] Bergeron, J., Cerny, E., Hunter, A., Nightingale, A., "Verification Methodology Manual for System Verilog ", 2006.

[36] http://www.asic-world.com/

[37] Stephen Bailey ,"Comparison of VHDL, Verilog and System Verilog", Digital Simulation White Paper ,2003.

[38] Accellera ," Property Specification Language Reference Manual", Version 1.1, June 9, 2004.

[39] http://download.springer.com/static/pdf/629/bbm%253A978-1-4020-8586-4%252F1.pdf?originUrl=http%3A%2F%

2Flink.springer.com%2Fbook%2Fbbm%3A978-1-4020-8586-4%2F1&token2=exp=1456829997~acl=%2Fstatic%

2Fpdf%2F629%2Fbbm%25253A978-1-4020-8586-4%25252F1.pdf%3ForiginUrl%3Dhttp%253A%252F%252

Flink.springer.com%252Fbook%252Fbbm%253A978-1-4020-8586-4%252F1*~hmac=8bdf8e9a41127284c1c5e12

ee1615f2a9c113dbb8c0bf9861d1736864154b96f

[40] http://core.tcl.tk/jenglish/gutter/browse.html

[41] https://www.doulos.com/knowhow/tcltk/xilinx/

[42] https://www.doulos.com/knowhow/fpga/Automating_Tool_Flows_with_Tcl/quartus.php

[43] https://www.doulos.com/content/training/tcl_essential.php

[44] http://www.tcl.tk/

[45] http://www.eetimes.com/document.asp?doc_id=1216487

[46] Bluespec ,"BSV 101: Designing a counter Using the Bluespec Development Workstation", Bluespec, October 27,

2009

[47] Paul Hudak, John Hughes, Philip Wadler, Simon Peyton Jones," A History of Haskell: Being Lazy With Class",

April 16, 2007.

[48] Klaus D. Günther1, Irmtraut Günther1,"Lava – An Object-Oriented RAD Language Designed for Ease of Learning,

Use, and Program Comprehension", Institute for Secure Tele-cooperation, Rheinstr.,Germany,2001.

[49] http://www.myhdl. Org/

[50] http://blog.pshdl.org/2014/03/web-updates.html

[51] http://www.encyclo.co.uk/meaning-of-JHDL

[52] http://www.jhdl.org/documentation/users_manual/behavioralModelling.html

[53] M.S. Sorensen, "Java on FPGA", Danish technological institute, 2008.

[54] http://phdl.sourceforge.net/2.1/index.php

[55] Zhiru Zhang, Yiping Fan, Wei Jiang, Guoling Han, Changqi Yang,and Jason Cong," AutoPilot: A Platform-Based

ESL Synthesis System ,high level synthesis from Algorithm to digital circuits ",chapter 6, Springer Science +

Business Media,2008.

[56] Fingeroff M High-level synthesis blue book". Xlibris, Philadelphia. ISBN 13 (HB): 978-1-4500-9724-6. ISBN 13

(eBook): 978-1-4500-9725-3,2010.

[57] Ben Hounsell, Richard Taylor, Co-processor Synthesis: A New Methodology for Embedded Software Acceleration,

Automation and Test in Europe Conference and Exhibition, IEEE, 2004.

[58] Harish Bhutra , Usha Patel, Darshana Upadhyay, "FPGAC: - High Level Synthesis Tool", IJCSC, Volume

5 ,Number 1, March-Sep 2014, pp. 150-153

 ISSN 2394-7314

International Journal of Novel Research in Computer Science and Software Engineering
Vol. 3, Issue 1, pp: (140-158), Month: January-April 2016, Available at: www.noveltyjournals.com

Page | 158
Novelty Journals

[59] Yana Yankova, Koen Bertels, Stamatis Vassiliadis, Roel Meeuws, Arcilio Virginia," Automated HDL Generation:

Comparative Evaluation", IEEE International Symposium on Circuits and Systems, 2007.

[60] http://klabs.org/mapld05/presento/215_holland_p.ppt

[61] M. Chinnadurai and M. Joseph ,"High Level Synthesis Tools-an Overview from Model to Implementation", Middle-

East Journal of Scientific Research,2014.

[62] Alexandre Cornu1, Steven Derrien, and Dominique Lavenier, "HLS Tools for FPGA: Faster Development with

Better Performance, Reconfigurable Computing: Architectures, Tools and Applications", 7th International

Symposium, Belfast, UK, March 23-25, 2011.

[63] Philippe Coussy , Adam Morawiec ,"High-Level Synthesis From Algorithm to Digital Circuit", Springer Science

and Business Media,2008.

[64] Coussy P, Takach," introduction: raising the abstraction level of hardware design". IEEE Des Test Computer

26(4):4–6,2009.

[65] J. S´erot, F. Berry, S. Ahmed, "Implementing Stream-Processing Applications on FPGAs : A DSL-Based

Approach" , Conference: International Conference on Field Programmable Logic and Applications, September 5-7,

Chania, Crete, Greece, 2011.

[66] http://sine.ni.com/nips/cds/print/p/lang/en/nid/13743

[67] http://www.ni.com/white-paper/5967/en/

[68] http://zone.ni.com/reference/en-XX/help/371599G-01/lvfpgaconcepts/customizing_i_o/

[69] David C. Uliana , "FPGA-Based Accelerator Development for Non-Engineers", Faculty of the Virginia Polytechnic

Institute and State University, Blacksburg, Virginia,2014.

[70] N. Banerjee …. "MATCH: A MATLAB Compiler for Configurable Computing Systems,” Technical Report, Center

for Parallel and Distributed Computing, Northwestern University, August, 1999.

[71] Todor Stefanov Claudiu Zissulescu Alexandru Turjan Bart Kienhuis Ed Deprettere,' System Design using Kahn

Process Networks: The Compaan/Laura Approach' Proceedings of the Design, Automation and Test in Europe

Conference and Exhibition ,IEEE,Leiden Embedded Research Center Leiden Institute of Advanced Computer

Science Leiden University, The Netherlands,2004

[72] http://edaplayground.readthedocs.org/en/latest/intro.html.

[73] https://www.doulos.com/knowhow/perl.

